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Local volume potentials for actinide metals
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Abstract

‘We have generated preliminary local volume potentials with a self-looping fitting procedure
for the actinide metals thorium and plutonium based on the available experimental data
of their cohesions and lattice constants and estimates of elastic constants and vacancy
energies. This effort is an attempt to model the mechanical and transport properties and
the stability of phases of these actinide metals under various pressures and temperatures.
The successes and deficiencies will be discussed.

1. Introduction

In order to study theoretically the properties of actinide metals such as
thorium and plutonium under various pressures and temperatures [1-7], we
need to model these metals ttsing molecular dynamics or Monte Carlo methods.
These methods require efficient and simplified descriptions of the interactions
between atoms, but no simple potentials of these metals exist.

We try to describe the interaction between Th atoms or Pu atoms by
using a local volume potential (LVP) [8] which is closely related to the
embedded atom method (EAM) of Daw and Baskes [9]. The details of the
form and fit of the potential have been described elsewhere [8, 10, 11]; we
only present a surnmary here.

The energy of a homonuclear system of n atoms is written as

E=2E, (1)
where the energy of atom 7 is given by
E;=312.¢(ry;) +Flpi] )

Here 7;; is the distance between atoms 7 and j, ¢ is a pairwise interaction
potential and p; is the ‘‘electron density’”’ at atom ¢ due to all its neighbors,

pi= EP(”'ij) 3

The embedding energy F|[p;], which depends only on the local volume
(or density), can be interpreted as the energy arising from embedding atom
% in an electron gas of density p;. To first order, this embedding energy
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contains all, and only, the quantum mechanical interaction between the
embedded atom and the host [12], leaving the pairwise potential to account
for the classical electrostatic interaction. To roughly mimic the shape of the
classical electrostatic interaction between two frozen, neutral atoms while
allowing fitting flexibility, ¢() is taken to be a Morse potential,

¢(r) =Dy{1 —exp[ — an(r —Ry)1}* —Dy 4

The three parameters Dy, Ry and ay define the depth, the distance to the
minimum and a measure of the curvature near the minimum respectively.
The density function p(7) is taken as

p(r) =7°lexp(—Br)+512 exp(—2pr)] ()

where 8 is an adjustable parameter. This is the density (ignoring normalization)
of a hydrogenic 4s orbital, with the second term added to ensure that p(7)
decreases monotonically with 7 over the whole range of possible interaction
distances. The 4s shape is chosen to be appropriate for a first-row transition
metal and is found to work well for many f.c.c. [13, 14], b.c.c. [15] and
h.c.p. [16] metals.

Following Foiles and coworkers [17, 18], F[p] is specified by requiring
that the energy of the f.c.c. crystal behaves properly as the lattice constant
is varied. Rose et al. [19] have shown that the cohesive energy of most
metals can be scaled to a simple universal function, which is approximately

Ey(a®)= —Ey(1 +a*) exp(—a*) (6)

where a* is a reduced distance variable and E; is the depth of the function
at the minimum (a* =0). The appropriate scaling is obtained by taking E,
as the equilibrium cohesive energy of the solid (E.,;) and defining a* by

ot = alag—1
(E'coh/Q-B‘())1 &

where a is the lattice constant, a, is the equilibrium lattice constant, B is
the bulk modulus and (2 is the equilibrinm atomic volume. Thus, knowing
E_ ., 0o and B, the embedding function is defined by requiring that the crystal
energy from eqn. (6) match the energy from eqn. (2) for all values of a*.
By fitting F[p] in this way, the potential should behave properly over a large
range of densities.

To be suitable for use in molecular dynamics and molecular statics
simulations, the interatomic potential and its first derivatives with respect
to nuclear coordinates should be continuous for all geometries of the system.
This is accomplished by forcing ¢(r), ¢'(r), p(r) and p'(*) to go smoothly
to zero at r=7,, (as discussed in ref. 8), with r_, optimized in the fitting
procedure. So that F[p] is properly defined in eqn. (9), Ey(a*) is also modified
to go smoothly to zero when the expanded crystal has a nearest-neighbor
distance equal to 7.

Given the above functional forms for ¢(7) and p(7r), the five parameters
Ry, Dy, ay, B and 7., are determined by minimizing the deviation between

)



355

the calculated and experimental values for the three cubic elastic constants
(Cyy, Cy2 and C,,), the vacancy formation energy (F.,.) and the bond length
(Ry) and bond energy (D,) of the diatomic molecule and by requiring that
the h.c.p. and b.c.c. crystal structures be less stable than f.c.c. Note that
because of the way F[p] is determined and because it is re-computed for
each new choice of the five parameters defining ¢(r) and p(r), the potential
always gives a perfect fit to the experimental values of E_, a, and B.

2. Potentials for «Th

We have used the procedure described above to generate LVPs for
thorium based on the experimental data of the lattice constants of a-Th and
B-Th [20], the cohesive energy of a-Th [21] and the elastic constants [22]
(Tables 1 and 2). The results of the fit and some calculated properties are
listed in Table 2 and Fig. 1. The r.m.s. deviation of the fit is 0.3%. The LVP
fits the f.c.c. and b.c.c. thorium reasonably well. In addition to the results
on the f.c.c. phase, we also calculate the vacancy energy of «-Th to be 3.085
eV. The elastic constants of B-Th (b.c.c. phase) and the vacancy energy
(2.988 eV) are also listed in Table 2. B-Th has a smaller cohesive energy
than a-Th by 0.47 €V, but they have about the same bulk modulus (0.5874 x 1012
dyn cm™2 for B8-Th vs. 0.5801 X 10'2 dyn em™2 for -Th). These results can
be checked by total energy band structure calculations or by experimental
measurements. We have also calculated the surface energies of several low
index planes (see Table 5), namely the (111), (100), (110) and (210) surfaces
of a-Th. We found that the (111) surface has the lowest energy (1860 mJ
m~2) while (210) has the highest energy (2013 mJ m™2). The surface energies
of a-Th are about 20% higher than the estimate of 1550 mJ m~2 for a-Th
using Miedema’s scheme [23] (see Table 5). The agreements between cal-
culated results and the estimate of surface energies are reasonable. The
surfaces with 1X2 missing row reconstructions on the (110) and (210)
surfaces of a-Th are not favored in our calculations, as shown in Table 5.
The predictions of no 1X2 reconstruction on the (110) and (210) free
surfaces are not yet verified experimentally (see refs. 13 and 14 and references
cited therein).

TABLE 1

Structural properties of thorium [20]. The melting temperature of thorium is 1755 °C and the
boiling temperature is 4788 °C [20]

Element Temperature Pressure Pearson Space Strukurbericht Prototype Lattice

°C) symbol group designation parameter
&
a
a-Th 25 Atm. cF4 Fm3m Al (f.c.c) Cu 5.0842

B-Th > 1360 Atm. cl2 Im3m A2 (b.c.c.) w 4.11
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TABLE 2

Experimental and estimated data of thorium and fitted results of local volume potentials. The
r.m.s. deviation of the fit is 0.3%

Property Exp. Fit or calc. Deviation
a-Th phase (f.c.c.)

a, (A) 5.080 5.080 Exact
E. (V) 5.926 5.926 Exact
B (10*2 dyn cm™?%) 0.5801 0.5801 Exact
Cn 0.7770 0.7782 +0.16%
Ci 0.4820 0.4811 —-0.19%
Cus 0.5110 0.5107 —0.05%
Epe (eV) - 3.085 -

B-Th phase (b.c.c)

a, (A) 4.110 4.083 -0.66%
E, (eV) - 5.879 -

B (10" dyn cm™2) - 0.5784 -

Cn - 0.6547 -

Crs - 0.5403 -

Cus - 0.6293 -

E,. (eV) - 2.988 -

D, (V) of diatomic - 1.169 -

R,y (A) of diatomic - 3.255 -

Local volume potential parameters for Th are: Dy =4.8463731 eV, Ry =2.23653 A, ay= 0.808975
A1 B=2.02639 A1, r,,=8.80861 A.
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Fig. 1. Local volume potentials for thorium: (a) p(7), (b) ¢(7) and (c) Flpl.

3. Self-looping fitting procedures and the potential for 5-Pu

We have chosen to fit the LVP to the f.c.c. and b.c.c. phases of plutonium,
because these phases have smaller numbers of atoms in the unit cells with
less directional f-bonding character [3] and are best described by the LVP
or EAM potential. Because the data for plutonium are very limited, we have
used some structural data of 3-Pu and e-Pu (Table 3) and some estimates
of elastic constants (Table 4) as our basis for fitting our plutonium potential.
This preliminary LVP is better at describing cubic phases of plutonium
(i.e. 3-Pu and e-Pu) than other phases of plutonium (i.e. a-Pu, B-Pu, y-Pu
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TABLE 4

Experimental and estimated data of plutonium and fitted results of local volume potentials.
Data in italics are estimations by comparison with nickel. The r.m.s. deviation of the fit is
1.3%

Property Exp. Fit or calc. Deviation
8-Pu phase (f.c.c.)

ae (A) 4.637 4.637 Exact
E, (eV) 4.00 4.00 Exact
B (10" dyn cm™?) 0.6630 0.6630 Exact
Ci 0.9050 0.9173 +1.36%
Cr2 0.5400 0.5359 —0.76%
Cy 0.4590 0.4594 +0.09%
E.. (V) 1.44 1.45 +0.78%
e-Pu phase (b.c.c.)

ao (&) 3.634 3.689 +1.51%
E, (eV) - 3.926 -

B (10*2 dyn cm™% - 0.4900 -

Ch -~ 0.3738 -

Cis - 0.5482 -

Cu - 0.4586 -

E... (V) - 1.39 -

D, (eV) of diatomic 1.75 1.803 +3.04%
Ry (A) of diatomic 2.90 2.918 +0.60%

Local volume potential parameters for Pu are: Dy = 1.851371 eV, Ry =2.79864 &, ay = 1.33108
A1, p=2.8448 A1, r,,—6.45585 A.

and §'-Pu). Other phases of plutonium are less accurately described by LVPs
(or the EAM potential), because the role of the angular dependence of the
interactions may be more significant. We have listed some known properties
in various phases of plutonium in Table 3 and 4. We used the experimental
lattice constants (a,) of 6-Pu and e-Pu [20, 24] and the cohesive energy
(E.) of a-Pu [21], assuming that E_ of 5-Pu is not very different from that
of a-Pu. The elastic constants (C,;, C,s, Csy and B) and vacancy energies
are not available, so we use f.c.c. nickel as a reference material to derive
the values for 6-Pu. We scale the elastic constants and bulk modulus with
the surface energy based on the experimental linear correlation between
surface energy and elastic constants [25]:

C;;(Pu) - I,(Pu)
C,(Ni) ~ L,(Ni)
where the C;; are the elastic constants in Voigt’s notation and I is the
surface energy of the (111) surface of the f.c.c. phase. The (111) surface
was chosen as a reference surface to calculate the surface energy, because

usually the (111) surface of f.c.c. metals has the lowest surface energy. The
bulk modulus B scales in the same fashion as the other elastic constants.

(8)
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The surface energy of nickel (2450 mJ m~%) is taken from ref. 23. The
energy of vacancy formation, E,,., is scaled with the cohesive energy E.:

E.(Pu)  E.(Puw)
E(ND)  E/Ni

The values of E. were taken from ref. 21. Similarly, the diatomic distance
R, and the cohesive energy D, scale with the lattice constant and cohesion
of f.c.c. plutonium respectively:

Ro(Pu)  ao(Pu)
RyNi)  ao(Ni)
Do(Pu)  E(Pu)
Do(Ni)  E.(Ni)

Because the elastic constants and vacancy energies of §-Pu are not
known experimentally or theoretically, we used a self-looping fitting procedure
in deriving the parameters for the LVPs for §-Pu. We start fitting potentials
by first assuming the (111) surface energy of 6-Pu is 1450 mJ m™2; we first
derive the initial estimated values for C;; and B according to eqn. (8), then
fit the potentials to these data. After we had generated the LVP potential,
we used the potential to calculate the surface energy of the (111) surface
of 8-Pu again. If the surface energy is different from the original assumed
values, we then adjust the assumed value for surface energy and go through
the fitting loop procedures again. We found that a final value for the (111)
surface of 8-Pu of 895 mJ m™2 gives us ‘“‘self-consistency’’ in surface energy
and elastic constants. The ‘“‘best’’ fit and the optimized parameters are shown
in Table 4 and Fig. 2. Tables 3 and 4 show the experimental data used in
the fits for §-Pu and e-Pu, along with the calculated values and the r.m.s.
deviations of the fit (1.3%).

‘We have also listed some calculated elastic constants and cohesive and
vacancy energies of the b.c.c. phase of e-Pu. The elastic constants (C; and
B as shown in Table 4) of e-Pu are smaller than those of §-Pu by about
25%. The vacancy energy of e-Pu is 1.39 eV, which is slightly smaller than
the vacancy energy of 8-Pu (1.45 eV). These results should be checked with
new total energy band structure calculations or experimental measurements

9)
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Fig. 2. Local volume potentials for plutonium: (a) p(r), (b) ¢(r) and (c) Flp].
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TABLE 5

Calculated relaxed surface energies I, for 8-Pu (f.c.c.) and a-Th (f.c.c.)®. I(1X2) is the
surface energy of the 1X2 missing row surface obtained by removing every other row of
<110> or <120> atoms. Thorium does not reconstruct on (110) or (210) surfaces, while
8-Pu may reconstruct on (210) but not on (110) surfaces. See refs. 13 and 14 for detailed
discussion on surface reconstructions

&-Pu &Pu a-Th a-Th
I, (mJ m~?) (1X2) (mJ m~?) I, (mI m~% I (1x2) (mJ m™?)
(111 895 - 1860 -
(100) 943 - 1897 -
(110) 1047 1078 1982 2093
210) 1099 1091 2013 2053

*Estimated values for surface energy are less than 2000 mJ m~2 for Pu and 1550 mJ m~2
for Th [23].

to test the accuracy of the potential. We also calculate the surface energies
of many low index surfaces of 8-Pu (Table 5). We found that the (111)
surface has the lowest surface energy of 895 mJ m~2 as expected and the
(210) surface has the highest surface energy of 1099 mJ m 2. These surface
energies should be compared with an estimate of less than 2000 mJ m™2
for the plutonium surface using Miedema’s method [23]. The large uncertainty
in the estimated surface energy using Miedema’s scheme is due to the lack
of reliable information about the material. No definite conclusion on the
quality of the potentials can be drawn at this point. We found (Table 5)
that the (110) surface of 6-Pu does not favor the 1X2 missing row recon-
structions like other f.c.c. metals such as gold, platinum and iridium (see
refs. 13, 14 and references cited therein). We also found that the (210)
surface of §-Pu may favor the 1X2 missing row reconstruction as predicted
for eight other f.c.c. metals (aluminum, nickel, copper, silver, palladium,
platinum, gold and iridium) [13, 14]. These calculations for the surface
energies and structures have to be taken only qualitatively because of the
assumption that the elastic constants of 8-Pu scaled with those of f.c.c.
nickel. We will test the LVP further on the structural and transport properties
of 8-Pu and e-Pu and the limits of the potential in describing other phases
of plutonium (¢.e. a-Pu, B-Pu, y-Pu and §'-Pu).

4. Discussion

Preliminary local volume potentials for the actinide metals thorium
and plutonium have been generated by fitting experimental data and some
theoretical estimates. These potentials fit available ‘“‘experimental” data rea-
sonably well. The r.m.s. deviations of the fit are rather small (in the range
of 1%). Quantities such as elastic constants, cohesive energies and vacancy
energies of the b.c.c. phases of thorium and plutonium have been calculated.
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These calculations have to be checked by experiments or total energy
calculations to determine the reliability of the potentials. The fit to plutonium
is particularly difficult, because elastic constants and cohesive energies are
not available. A self-looping procedure was used to derive a ‘‘self-consistent”
fit to the elastic constants and surface energies. More reliable data on elastic
constants, vacancy energies and cohesive energies of thorium and plutonium
are needed. The present set of potentials (especially the potentials of plu-
tonium) can be used with caution to give a rough idea of how the cubic
phases of thorium and plutonium will behave. The potentials for thorium
are better than those for plutonium. Tests of these potentials for other phases
of plutonium by calculating the relative stability of a-Pu, B-Pu, y-Pu, §-Pu,
é'-Pu and e-Pu as well as vacancy migration energies, surface energies,
surface reconstructions and phase changes under various combinations of
pressure and temperature, together with tests on thorium, will be presented
in a future publication. As new and reliable data or calculations on elastic
constants and cohesive energies for plutonium and thorium become available,
a new set of potentials will be fitted. If we find that local volume potentials
are not capable of describing plutonium and thorium, we will examine the
applicability of tight-binding approaches in the empirical forms of Tersoff
[26] and Pettifor [27] or the ab initio form of Andersen and Jepsen [28].
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